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Abstract 

The Ordered Binary-Decision Diagram (OBDD) has been used to reduce the amount of space and com- 
putation required for verifying digital circuits by removing redundant copies of subfunctions. Similarly, 
image compression algorithms attempt to reduce their space requirements by finding replicated patterns 
or features in images. OBDDs would therefore appear to be a good candidate as a data structure for 
representing images. We show how images can be encoded using Ordered Binary-Decision Diagrams and 
compare our results to quadtrees. We also show how using this method extends naturally to compressing 
sequences of related images such those that comprise movies. 
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and the Advanced Research Projects Agency (ARPA) under grant F33615-93-1-1330. 

The US Government is authorized to reproduce and distribute reprints for Government purposes, notwithstanding any 
copyright notation thereon. Views and conclusions contained in this document are those of the authors and should not 
be interpreted as representing the official policies, either expressed or implied, of Wright Laboratory or the United States 
Government. 
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1 Introduction 

The introduction of Ordered Binary-Decision Diagrams [2] to the field of VLSI circuit verification has 
a large impact on the size and complexity of circuits that could be verified. The boolean functions for 
digital circuits were found to contain many equivalent subfunctions. By building a data structure such 
that these subfunctions could be shared in some way not only reduces the space requirements of storing 
these circuits but also reduces the computation required when manipulations are performed on the reduced 

representation. 
The OBDD data structure is similar to the binary analog of the quadtree data structure [6]. Both 

of these data structures attempt to reduce the amount of storage required to store data with replicated 
patterns (or subfunctions). The traditional quadtree has nodes that reference each of the four quadrants 
when subdividing the area into equal parts. Each of these quadrants is subdivided into four parts and so 
on until the pixel values are reached. If a quadtree node references four pixel values of the same color then 
it is removed and the pixel value is promoted to the parent node. For images with blocks of the same color, 
this can produce a reduction in the number of nodes required to represent the image. The binary analog 
to the quadtree, the bintree, has binary nodes which reference the two halves of the image. The division 
into halves is alternated between dividing in the x direction and the y direction. Nodes are eliminated if 
the two children have the same pixel value. 

The Ordered Binary-Decision Diagram also has binary nodes. In addition, all of the nodes can be 
shared in the entire OBDD. Therefore, any pattern that occurs multiple times will have one instance in 
the OBDD that is referenced by nodes that have that pattern as one of their children. Also, a node 
is eliminated if the two children are identical regardless of whether they are pixel values or sub-OBDDs 

representing more complex patterns. 
We describe how we build Ordered Binary-Decision Diagrams from images. The resulting OBDDs are 

compared in terms of the number of nodes to the binary version of the quadtree, the bintree [4, 6, 7]. We 
compare the number of nodes required for a set of examples. We also show the worst cases for the size of 
each data structure given images of certain sizes with varying numbers of colors. Our comparison continues 
with calculating the binary file sizes required to store images for each representation. 

We then proceed to describe how the Ordered Binary-Decision Diagram lends itself to be used for 

storing sequences of related images such as found in movies. 
Our results show that storing images as Ordered Binary-Decision Diagrams results in a large savings in 

memory requirements at only a slight increased cost in file storage. Images represented as bintrees require 
4 times as many nodes as required by Ordered Binary-Decision Diagrams. The size of files required to 
store images as OBDDs is only 25% larger than the files required for storing bintrees. 

2 Images as Ordered Binary-Decision Diagrams 

Ordered Binary-Decision Diagrams are a natural way of describing binary circuits. Each node represents 
the value of a binary variable. If the value is 1 then one branch is taken, a value of 0 causes the other 
branch to be taken. There are no other possible values so by knowing the binary value of the variables 
along the path, the resulting binary value can be found. For example, suppose we have three variables a, 
b and c and we want to represent a and c. If a has a value of 0 then the result is 0 regardless of the values 
of b or c. If a is 1 then the result depends on the value of c. If c is 1 then a and c is 1 otherwise a and c 
is 0. Figure la shows the complete binary tree required to represent this binary function. In this figure a 
variable of value 1 indicates that the left branch should be traversed and the value of 0 the right branch. 
The bintree representation of this circuit would remove the nodes that reference the same leaf value. The 
bintree representation is shown in figure lb. The OBDD representation not only removes the nodes with 
identical leaf values but also removes the nodes that have identical children. Figure lc shows the resulting 



a) b) 

Figure 1: Representations of the binary function a and c as a binary tree (a), binary quadtree (bintree) 
(b) and OBDD (c). The left and right branches correspond to values of 1 and 0, respectively. 

OBDD for this simple binary function, where the node labeled b has been eliminated. 
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Figure 2: A Simple black and white image and the variables and leaf values required to form a OBDD 

For images there is no simple function of a set of variables that describes an arbitrary image. Therefore, 
we make the image a function of its x and y coordinates. To keep with the OBDD convention of taking 
left or right branches depending on the bit value of the variable, we use the binary representation of the 
coordinates to build the OBDD. We use big endian bit numbering to represent the coordinate values and 
we alternate between x and y values. Figure 2a shows a sample black and white image and the coordinates 
of the pixels. To build the OBDD, we choose the ordering of variables for this 4 by 4 image to be xi, yu 

x0, y0. The resulting OBDD is shown in figure 3b and for comparison the bintree representation using the 
same ordering of nodes is shown in figure 3a. 

This example shows how a OBDD representing a black and white image can be created. This conforms 
naturally to the use of OBDDs for circuit verification where leaves have binary values of 0 or 1. OBDDs 
have been extended to allow a range of leaf values [1, 3] and we use that extension to represent images 
with many colors or grey levels. 

This method for dividing up the image works best for images that are 2" by 2", 2" by 2n+1 or 2n+l 

by 2n. However, a OBDD or bintree can be constructed from any image by finding the largest rectangle 
[log2 width] by [log2 height] and assigning a "background" value for any points external to the image. 
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Figure 3: The bintree (a) and OBDD (b) representations of the image in figure 2 

3     Ordered Binary-Decision Diagrams versus Bintrees 

There are many ways to compare the efficiency of data structures. There are usually tradeoffs between 
space and speed for different operations. We concentrate primarily on the saving of space. There are 
numerous operations that are performed on quadtrees that we believe will perform as well if not better 
on OBDDs. In circuit verification OBDDs increase performance of operations by caching results. If an 
operation is performed twice on an identical subpart of the OBDD the cached result will be used the second 

time. 
We will compare the space required by OBDDs and bintrees in two ways. The first is to compare 

the number of nodes required. Figures 2b and 2c have already provided a comparison of the number of 
nodes required for some simple cases. We believe that a reduced number of nodes is important since the 
data structures must be present in memory to be manipulated. The second comparison is of file sizes. 
This compares the number of bits required to store each of the representations and permit the internal 

representation to be reconstructed. 

3.1     Comparison of Nodes 

The number of nodes required for OBDDs and bintrees is dependent on a number of factors. Image size 
plays a role in how many variables are required. However, a small square tile with dimensions 2n by 2™ 
replicated 2m by 2m times can produce identical instances of the data structure. The number of colors is 
also important to the number of nodes. With only 2 colors it is more likely that patterns will be replicated 
thereby reducing the sizes of the data structures. And finally, the amount of redundancy is the most 
important factor determining the size of the data structure and hence the number of nodes. 

Figure 4 shows a number of images formed from the base tile in figure 4a. The corresponding OBDDs 
are shown in figure 5. Since the basic tile is identical in all of the images, the OBDD that is constructed is 
that of the basic tile. For demonstration we have shown the root being higher the larger the image but the 
OBDDs are identical. The bintree representation that corresponds to figure 4b appears in figure 6. This 
can be compared to the OBDD in figure 5b. These figures show quite clearly that OBDDs can produce a 

much smaller data structure. 
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Figure 4: Repeating pattern in a) 4x4 pixels, b) 8x8 pixels, c) 32x32 pixels 

Figure 5: OBDD representations corresponding to the images in figure 4 

Figure 6: Bintree representation of the 8x8 pixel image of the repeating pattern in hgure 4b 



Figure 7: Random selection of Pictures, a) world map, b) Mellon Institute, c) Carnegie Mellon University 
campus, d) cat. 

Figure 7 shows a sampling of images of different sizes and complexity. There are two different sizes 
represented here and varying number of colors. Table 1 shows these parameters as well as the number of 
nodes and leaves required to represent the images as OBDDs and as bintrees. The total number of nodes 
required by bintrees is approximately four times the total number required by OBDDs. The simplest way 
to implement these nodes is to use two pointers, one to each child. This makes traversal easy. OBDD 
nodes, unlike bintree nodes must also contain information indicating which level of the OBDD they are 
on. This is usually much smaller than the two pointers, requiring \\og2(width +height)] bits. 

It is interesting to compare the bounds on the number of nodes for both data structures. We can 
calculate the worst cases for images based on their dimensions and the number of colors. The best case is 
trivial, representing degenerate images of 1 leaf node. 

3.1.1     Worst Case Analysis 

Our analysis of the worst case for the OBDD and bintree provides an upper bound on the amount of 
storage required by the data structures. Our analysis is based on the shape and size of the resulting data 
structures and not the actual characteristics of the worst case image. 

For the bintree the largest number of nodes required is when it forms a complete binary tree of depth 



OBDD Bintree 
Image colors nodes leaves total nodes    leaves      total OBDD/bintree 

world (fig. 7a) 7 3701 7 3708 10610    10611    21221 0.175 
Mellon (fig. 7b) 50 15826 50 15876 32891    32892    65783 0.241 
CMU (fig. 7c) 40 7805 40 7845 14016    14017    28033 0.280 
cat (fig. 7d) 50 6779 50 6829 12659    12660    25319 0.270 

Table 1: Comparison of the nodes required for representing images as OBDDs and as bintrees. 

n, where n is based on the width and height of the image, n — [log2 width] + |"log2 height]. Therefore, the 
number of nodes and leaves can be calculated as follows. 

nodeSUntree     =     2 ^ width^ + P°<& ^^  - 1 

leaveSUntree     =     2 TloS2 width] + fl°&2 height] 

The Ordered Binary-Decision Diagram is more difficult to analyze. We use the findings in [5] to find 
the number of nodes. At each level of the OBDD the number of nodes are constrained by either the 
number of possible nodes for a full binary tree or the number of nodes given the possible combinations of 
the descendent nodes. For a large n, the top part of the OBDD will resemble a binary tree with n — k 
levels. The bottom of the OBDD will be constrained by the number of colors, c and their combinations. 
The division between the top part and the bottom part of the tree is where the number of combinations 
exceeds the number of possible nodes formed by a binary tree. The number of nodes in the bottom part 
of the tree is bounded by c2 . 

nodesoBDD    =    mink(2n k - 1) + (c2 ) 

leavesoBDD   =    c 

The results of these calculations are presented in Figures 8a and b. Figure 8a shows how the number 
of nodes in the worst case changes depending on the number of colors in a 128 by 128 pixel image. The 
figure also shows the number of nodes for each encoding of ten sample images including the two figures 
mentioned in table 1 with these dimensions. These real data show that there are typically a number of 
patterns found in images. Figure 8b shows the data for 256 by 256 pixel images again with ten sample 
image data points including two from table 1. 
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Figure 8: Comparison of 14 (a) and 16 (b) level bintree and OBDD representations for images 



3.2     Comparison of File Storage 

To compare the amount of file storage required by these two methods we take a rather simple approach. 
In both cases we wish to incorporate enough information to enable reconstructing the same data structure 
from the data. For both we will assume bit level input/output streams which we have implemented on 
character based streams. 

Bintrees can be stored by introducing an additional character to the set of colors, c, as suggested by [7]. 
Therefore, the number of bits per symbol is equal to [log2 (c + 1)]. Multiplying this by the total number 
of nodes gives the size of the file. We also need to store the number of colors which we assume is stored 
in a 32 bit unsigned integer. We need to list the symbol and the actual color value it represents which is 
c * [log2 (c + 1)] * 32 bits, assuming that the description of the colors requires 32 bits. 

file sizeb: intree 32 

+ ([log2(c+l)l+32)*c 

+ l"loS2 (c+ 1)1 * (nodeSbintree + leaveshintree) 

OBDDs require a little more information. We need to store the number of colors, the total number 
of nodes and leaves and the number of levels. We need a mapping of the node representing the color to 
the color value. We also need to store the level number before each set of nodes for a level along with the 
number of nodes at that level. Then we list the nodes in numerical order specifying only their two child 
nodes. 

file sizeoBDD    =    32 + 32 + 32 

+ (flog2 (nodesoBDD + leaves0BDD)] + 32) * c 

+ (log2 width + log2 height) * (flog2 (nodesoBDD + leaves0BDD) 

+2 * flog2 (nodesoBDD + leaves0BDD)] * nodesoBDD 

■32) 

OBDD Bintree 
Image colors nodes leaves          bits nodes leaves          bits OBDD/bintree 
world (fig. 7a) 7 3701 7      88932 10610 10611      63716 1.396 
Mellon (fig. 7b) 50 15826 50    446260 32891 32892    395030 1.130 
CMU (fig. 7c) 40 7805 40    205456 14016 14017    168470 1.219 
cat (fig. 7d) 50 6779 50    179230 12659 12660    152246 1.177 

Table 2: Comparison of the file size in bits required for representing images as OBDDs and as bintrees. 

Table 2 shows the number of bits required for the sample images stored using these schemes. On 
average OBDDs produce files apprximately 25 percent larger than bintrees. 

Ordered Binary-Decision Diagrams appear to provide more compressed data structures for manipulating 
images in memory. The number of nodes required to represent the images is the important factor. Although 
the nodes are slightly larger in OBDDs, the memory requirements are much less than that for binary 
quadtrees. When creating a file for storing the data structures, the binary quadtree produces slightly 
smaller files. 



4    Compressing Movies Using Ordered Binary-Decision Diagrams 

We have shown how images can be compressed using Ordered Binary-Decision Diagrams. One of the prime 
features of OBDDs that permits less data storage for storing images is their sharing of commom sub-OBDDs 
representing subimages. We use this infrastructure for sharing common subimages to investigate storing 
sequences of related images using OBDDs. 

Movies are composed of sequences of related images. Typically these images do not change greatly 
from frame to frame to give the impression of continuity when viewed in sequence. Using OBDDs we can 
exploit the similarities between successive frames. 
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Figure 9: A simple 8 frame "movie" 
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Figure 10: The OBDD representation of the entire "movie" 

Figure 9 shows a very simple example of a "movie". Each of the frames is related in that the "back- 
ground" is remaining constant and the "arrow" in the foreground is moving from the bottom left corner 
to the top right corner. If we build a OBDD for each of these frames the resulting set of individual repre- 
sentations requires a sum of 80 nodes. By combining the OBDDs as shown in figure 10 we get a OBDD 
containing 38 nodes. 

This is a very simple example but illustrates how movie OBDDs can be constructed. Once the OBDD 
has been built, each frame can be individually accessed just by traversing the OBDD from the root 
representing that frame. 



5     Conclusions 

We have shown how images can be compressed using Ordered Binary-Decision Diagrams. The number of 
nodes required to represent an image is one quarter the number required when using binary quadtrees. We 
have shown the number of nodes required in the worst case as well as some sample images. Storing the 
OBDDs to files requires slightly more space than storing binary quadtrees. 

The mechanism of sharing identical sub-OBDDs representing subimages is also useful when compressing 
related image sequences such as movies. We therefore use the same compression technique for storing inter- 
frame and intra-frame differences and similarities. 

We believe that operations on OBDDs can be as efficient if not more efficient as those on binary 
quadtrees. This remains as future work as we continue our research into using this versatile data structure 
for representing images. 
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